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The MAPT H1 haplotype has been associated with four-repeat (4R) tauopathies, including progressive supranuclear
palsy, corticobasal degeneration, and argyrophilic grain disease. More controversial is that the same haplotype has
been associated with Parkinson disease (PD). Using H1-specific single-nucleotide polymorphisms, we demonstrate
that MAPT H1 is a misnomer and consists of a family of recombining H1 alleles. Population genetics, linkage
disequilibrium, and association analyses have shown that specific MAPT H1 subhaplotypes are preferentially as-
sociated with Parkinson disease. Using a sliding scale of MAPT H1-specific haplotypes—in age/sex-matched PD
cases and controls from central Norway—we have refined the disease association to within an ∼90-kb interval of
the 5′ end of the MAPT locus.

Introduction

Tau proteins are a group of microtubule-associated pro-
teins that play an important role in promoting the as-
sembly and maintaining the structure of microtubules.
They are expressed in neurons, being particularly abun-
dant in axons (Higuchi et al. 2002). Alternate mRNA
splicing of exons 2, 3, and 10 of the tau gene (MAPT)
on chromosome 17q21 results in the expression of six
polypeptides in the human CNS (Higuchi et al. 2002).
The predominant isoforms differ by the presence of either
three or four microtubule-binding domains (3-repeat [3R]
and 4-repeat [4R] isoforms), which result from the ex-
clusion or inclusion of exon 10 (Panda et al. 2003).

Missense and splicing mutations in MAPT were first
identified in frontotemporal dementia with parkinson-
ism linked to chromosome 17 (FTDP-17 [MIM 600274])
(Hutton 2001). This disorder is called, in pathology
terms, a “4R tauopathy” because of the presence of
fibrillar aggregates comprising the 4R tau isoform. Sus-
ceptibility mutations have yet to be identified for other
4R tauopathies, including progressive supranuclear palsy
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(PSP [MIM 601104]), corticobasal degeneration, and
argyrophilic grains disease; however, these disorders
are associated with common polymorphic variability in
MAPT (Conrad et al. 1997; Houlden et al. 2001; Togo
et al. 2002). There are two predominant MAPT hap-
lotypes—termed “H1” and “H2” and extending 1500
kb—in which variants appear to be in complete linkage
disequilibrium (LD); H1 and H2 haplotypes do not re-
combine (Pastor et al. 2002). H1/H1 homozygous ge-
notypes are overrepresented in 4R tauopathies.

More recent and far more controversial is that over-
representation of MAPT H1/H1 genotypes has been as-
sociated with idiopathic Parkinson disease (PD [MIM
168600]) (Golbe et al. 2001; Maraganore et al. 2001;
Martin et al. 2001; Farrer et al. 2002). PD is clinically
characterized by a combination of motor symptoms,
including muscular rigidity, bradykinesia, and resting
tremor (Lang and Lozano 1998a, 1998b). In pathology
terms, PD is classified as an a-synucleinopathy because
of the presence of Lewy body inclusions within surviv-
ing neurons (Braak et al. 2003).

Since our initial report (Farrer et al. 2002) of a MAPT
H1/H1 association with PD (odds ratio [OR] for H1/
H1 vs. H1/H2 and H2/H2 is 5.52; 95% CI 2.64–11.10;

; cases � 68 controls), we have been�6P ! 2.1e n p 96
collecting additional cases and controls to replicate and
refine the evidence for a MAPT H1 association with
PD. Studying the homogeneous population of central
Norway and H1-specific SNPs, we now demonstrate:



Table 1

MAPT H1-SNPs

Assay Type, ID, SNP, and Primers (5′r3′)a Alleles
Fragments

(bp)
Product

(bp) Enzyme

Restriction enzyme digest:
8:

rs242937:
F: ACCCACAGACCACGACCTTCCAAC G 279, 192 471 MnlIR: CCTGCCTCTTTCTGCCCATTGG A 471

9:
rs242935:

F: GGGCCACTGGATCACAAGGTTG T 258, 181, 59, 30 528 Tsp509IR: CCGGCCCATAATCTGCATTTCTAAC C 288, 181, 59
10:

rs242928:
F: TTAAGGAAGCACCCATGACAGCC A 266, 144, 51 461 MboIIR: AAACAGTTCTGTGGAATTTCACCCTG G 410, 51

12:
rs16339368:

F: GGTAGAGGCCAGGAATGCTGTTAAAC C 277, 202 479 AciIR: GGTCATGCTCCGATTACAGACTCTTG A 479
1:

rs242562:
F: CAGCCTTCCCTGTCCTTGATTC G 385 385 XhoIR: GCCTTCCCAACAGAGCAACC A 287, 98

2:
rs2435207:

F: AGCAAGCTGTGTGACCAG G 197, 41 238 BclIR: CCCATTCTCTGACAGATTTG A 112, 85, 41
14:

rs2258689:
F: AGACATCCACACGTTCCTC C 132, 107, 9 248 AflIIIR: CAAACCACAGCAGAGCAG T 239, 9

3:
rs16339369:

F: CGAGTCCTGGCTTCACTCC G 257, 54, 26, 20, 6 370 BstNIR: CTTCCAGGCACAGCCATACC A 201, 56, 54, 26, 20, 6
4:

rs16339370:
F: GGCTGGCCCTGCTCCTTCTCTA T 247, 105 352 TaiIR: TGGCAAGGACGTTGGGGGACAGGG C 352

5:
rs16339371:

F: GACTGATAGGTGGGAGGTGGCTGC CT 228, 226 454 PvuIIR: CAGCAGCTCGGACGTGAG AA 454
SNaPshot:

6:
rs110402:

F: GTGCACTCTGTACACTCACTGGACC C … 483 …R: GTATGATTCAGGAATAAGGCAGAAGC T …
S: CACAGAGGACTGGTGTTGC … … … …

7:
rs171440:

F: CTGCACAGAACAAAGTACACGTGAC G … 433 …R: TCCTATGCAAAGAAGACACAAGGG A …
Sb: aactgaGCGAGGGACCAAGAGAAG … … … …

11:
rs2019820:

F: GGTCATCTCTAGTGGGCATTAACACG C … 381 …R: TGACAAAGGCAAGAGTACACAAAGGG T …
Sb: aactCCAGGCTGTTCTCGAACT … … … …

13:
rs3785883:

F: CCATCACCTTGTCAGAAACTC G … 277 …R: AGCCATGTGGTAGCCTCAG A …
Sb: aactgactaaCACTGTCACCACTGGGC … … … …

a F p forward; R p reverse; S p sequencing.
b Sequencing primer plus nonannealing sequence.
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Table 2

SNPs to Determine Extent of the MAPT “Nonrecombining” H2 Haplotype

SNP and Primers (5′r3′)a Alleles
Fragments

(bp)
Product

(bp) Enzyme Position

Restriction enzyme digest:
rs878886:

F: GTTAGGTCTCATGCCCACTCCC G 225, 126 351 BanII …
R: GAGTCAGAGGCTGTCACGAGTTG C 145, 126, 80

Sequencing (CRHR1):
rs8072451:

F: GTTGAGTGTATAGCAGGCCTCCTAAC G … 517 … Exon 2 �114 bp
R: AGGTGGAGGTCACAGTGAGCTG A …

rs3418:
F: AATCCACCTTCTCTCTCTCACAAACC C … 865 … Exon 8 �196 bp
R: TACATCATCTTGCTCGCCTCAGG T …

a F p forward; R p reverse.

Table 3

MAPT Haplotypes in a Large Community-Based PD Case-Control Series

SAMPLE n

NO. OF GENOTYPES (%) H1/H1 VS. H1/H2 AND H2/H2 H2/H2 VS. H1/H1 AND H1/H2

H1/H1 H1/H2 H2/H2 OR 95% CI P OR 95% CI P

Controls 441 282 (63.9) 143 (32.4) 16 (3.6) 1.0 Reference … 1.0 Reference …
PD cases:

Alla 296 227 (76.7) 62 (20.9) 7 (2.4) 1.86 1.33–2.59 .0002 .64 .26–1.58 .33
Probable and possible 280 213 (76.1) 60 (21.4) 7 (2.5) 1.79 1.28–2.51 .001 .68 .28–1.68 .40
Probable 223 169 (75.8) 50 (22.4) 4 (1.8) 1.77 1.23–2.54 .002 .49 .16–1.47 .19

NOTE.—Adjustment for age/sex by logistic regression was not significant.
a Includes all probable, possible, and atypical PD cases.

(1) evidence of recombination in controls with MAPT
H1/H1 genotypes; (2) unusual patterns of LD in PD
cases; (3) H1-SNP multilocus association with PD; and
(4) that the region associated with PD resides within an
∼90-kb interval of the 5′ end of MAPT. Specific MAPT
H1 subhaplotypes are overrepresented in patients with
PD and accounts for the magnitude of the H1/H1 as-
sociation observed in past studies.

Material and Methods

DNA samples and clinical information was available
from 296 unrelated Norwegian patients with PD (mean
age at onset 59 � 8 years; mean present age 74 � 8
years); these were sequential new referrals to the De-
partment of Neurology, University of Trondheim, Nor-
way, between May 1998 and June 2002. All subjects
were examined using standardized clinical protocols, in-
cluding the Unified Parkinson’s Disease Rating Scale and
the Mini–Mental State Exam, by a neurologist special-
ized in movement disorders (J.A.) (Fahn et al. 1987,
1993). Cases with possible PD showed at least two of
four cardinal signs (bradykinesia, rigidity, rest tremor,
and asymmetric onset). All cases with probable PD
showed at least three of four cardinal signs (“definite
PD” is a term reserved for autopsy-confirmed cases) and

were levodopa responsive. Subjects with minimal or no
improvement from levodopa (in combination with car-
bidopa) at a dosage of �750 mg/d were considered atyp-
ical. Patients with other causes of parkinsonism or with
unexplained signs of more extensive neurologic involve-
ment were excluded (dementia or mild dysautonomia
were allowed if they occurred after the first year of motor
symptoms). Our criteria are consistent with those vali-
dated elsewhere (Gelb et al. 1999). Unrelated Norwegian
controls (mean present age 80 � 6 years) were volun-
teers recruited from the Department of Ophthalmology
and the Department of Internal Medicine, University of
Trondheim, and from the local blood bank. Subjects
were recruited from within a 200-mile radius of Trond-
heim, central Norway, and 180% of them were from
within 50 miles of the city. All subjects have Norwegian
ancestry dating back 14 generations. Appropriate insti-
tutional-review approval and informed consent were ob-
tained. MAPT genotyping in a subset of 96 PD cases
and 68 controls has been described elsewhere (Farrer et
al. 2002).

Prior analysis from our Norwegian cohort suggests
that, on average, “useful” LD ( ) can be detectedr 1 0.1
with as little as 1 SNP/40 kb (unpublished data); our
objective was to identify 1 H1-SNP/10 kb of genomic
sequence. SNPs were identified in public and Celera da-
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Figure 1 Graphical overview of LD within the MAPT locus. PD cases and controls each consist of matched groups of 81 individuals
homozygous for H1/H1 genotypes (as defined by the intron 9 in/del [Baker et al. 1999]). The relative positions of H1-SNPs are numbered on
both axes, and all pairwise measures of D′ are considered. The relative positions of H1-SNPs are the same on both axes, of both plots, and as
numbered for each abscissa; all pairwise measures of D′ are considered.

Figure 2 Ideogram of the CRHR1-MAPT region. Physical distances are given in Mb; gene assignments are oriented 5′r3′ with respect
to their promoters (top). H1-SNPs are indicated by circles within genes and by numbers beneath, and their relative positions within MAPT are
indicated (center). The relative positions of MAPT exons are also shown but are not to scale (bottom). Note, 4 denotes exon 4 and exon 4A.

tabases, and the genotyping of putative variants in H1/
H1 and H2/H2 control individuals ( ) dem-n p 11 � 11
onstrated whether the SNPs were polymorphic and H1
specific. H1-SNPs located within the nonrecombining
region are polymorphic in a population of H1 chro-
mosomes; by default, H1-SNPs do not exist on H2 chro-
mosomes. Direct sequencing was used to identify ad-
ditional H1-SNPs within the 5′ end of the MAPT locus.
Approximately 5 kb of resequencing was performed
in evolutionarily conserved regions of human-mouse
sequence identity, highlighted by mVISTA analysis

(Mayor et al. 2000). Sequence traces were assessed in
12 Norwegian individuals (6 PD cases and 6 controls)
homozygous for the MAPT H1 intron 9 insertion/de-
letion (in/del) (Baker et al. 1999). Gene Runner v.3.05
(Hastings Software) was used for all primer design; ge-
notyping and sequencing were done with conventional
techniques (Farrer et al. 2002; West et al. 2003). All
SNPs used in our study have been submitted to dbSNP
(tables 1 and 2).

Tests of departure from Hardy-Weinberg equilibrium
were done for each SNP, by use of Arlequin for pop-
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Table 4

MAPTH1 Subhaplotype Frequencies in PD Cases and
Controls

H1 SUBHAPLOTYPEa

(ALLELIC CONFORMATION)

FREQUENCY (n) AMONG

Controls PD Cases

I (GGTACGCGT) .16 (26) .22 (35)
II (GGCGTGTGT) .09 (14) .08 (13)
III (GGTACGTGT) .06 (9) .04 (7)
IV (AGTACGCGT) .05 (8) .06 (10)
V (AACACATGC) .05 (8) …
VI (AACATGCAT) .04 (7) …
VII (GGCACATGC) .04 (6) …
VIII (GGTATGCAC) .03 (5) …
IX (GGCACGCGT) .03 (5) …
X (GGTATGCAT) .03 (5) …
XI (GGCGTGCGT) .02 (3) …
XII (AACGTGTGT) … .08 (12)
XIII (GGCACACGC) … .04 (6)
XIV (AACACATGT) … .03 (5)
XV (GGCATGCGT) … .03 (4)
XVI (GGCACGTGT) … .02 (4)
XVII (GGCATATAC) … .02 (3)

a H1 subhaplotypes are comprised of “haplotype tag-
ging” H1-SNPs 7-8-9-10-11-1-14-3-4.

ulation genetic analysis (Schneider et al. 1997). Single-
marker tests for association were performed with a x2

test, by use of CLUMP for allele and genotype fre-
quencies (Sham and Curtis 1995). ORs for each geno-
typic variant were calculated (11 and 12 vs. 22; 11 vs.
12 and 22) using SPSS, release 10.0.0 (SPSS Inc.). Ex-
pectation-maximization methods were used to calculate
bilocus and multilocus haplotypes and their frequencies.
P values were estimated by a Monte Carlo approach
with 10,000 simulations. Pairwise measures of LD (D,
D′, and r2) were calculated using the Excel macro Ge-
notype Transposer (Cox and Canzian 2001) and were
viewed using GOLD (Abecasis and Cookson 2000). The
LDMAP program was used to construct LD maps based
on the physical positions of H1-SNPs (Maniatis et al.
2002).

Results

Our replication cohort includes 200 cases (median age
70 years; range 40–94 years; male frequency 0.59) and
373 controls (median age 68 years; range 50–93 years;
male frequency 0.61) in which the association remains
significant ( ; 95% CI 1.6–3.4; ).�5OR p 2.3 P ! 1.4e
Combined, the data sets also demonstrate that MAPT
H1/H1 genotypes are significantly overrepresented in
Norwegian cases of PD versus in controls ( ;OR p 1.86
95% CI 1.3–2.6; ; cases � 441 con-�4P ! 2e n p 296
trols) (table 3). Diagnostic stratification of probable,
possible, and atypical PD cases does not appreciably
alter the OR observed, suggesting that the overrepre-

sentation of H1 homozygotes is unlikely to be explained
by misdiagnosis of PSP as PD (Schrag et al. 1999).

Microsatellite variability within MAPT suggests that
the H1 haplotype may be partitioned into H1-specific
subhaplotypes (Golbe et al. 2001). Given this assump-
tion, we hypothesized that higher-resolution genetic
mapping of MAPT disease association may be feasible
by dissecting the genetic architecture of H1 subhaplo-
types. mVISTA analysis was used to compare human
and mouse MAPT loci (Genbank accession numbers
AC091628 and AC091629, respectively) and to high-
light conserved regions with 175% sequence identity,
which are perhaps functionally important (Mayor et al.
2000). Amplicon sequencing was subsequently priori-
tized in 12 individuals with H1/H1 genotypes (defined
using the intron 9 in/del [Baker et al. 1999]), in an
attempt to discover H1-specific variability, herein de-
noted “H1-SNPs.” SNP and H1-SNP identification
numbers, primers (5′r3′), and assay details are given in
tables 1 and 2.

A matched subset of 81 probable PD cases and 81
controls, all homozygous for H1 (defined using the in-
tron 9 in/del), were selected for H1-SNP genotyping,
LD, and haplotype-association analyses. The median
age was 76 � 3.9 years (range 71–86 years) in the case
group and 81 � 5.1 years (range 72–93 years) in the
control group. Initially, pairwise LD statistics were gen-
erated for five MAPT H1-SNPs (fig. 1).

LD between H1-SNPs 1–4 was considerably greater
in PD cases than in controls, and, in the former, the LD
appears to extend further 5′ of MAPT. Genotyping ad-
ditional SNPs in H1/H1, H1/H2, and H2/H2 control
individuals ( ) showed that the nonrecombiningn p 15
region between H1 and H2 haplotypes extends at least
100 kb 5′ of MAPT, including the corticotrophin-
releasing hormone receptor locus (CRHR1). Hence,
additional H1-SNPs were sought within the CRHR1-
MAPT interval, and a further nine were identified and
genotyped within matched Norwegian cases of PD
( ) and controls ( ). Relative H1-SNP po-n p 81 n p 81
sitions are illustrated on an ideogram of genes in the
region (fig. 2).

SNPtagger was used to identify the minimum set—9
of the 14 H1-SNPs—required to capture 100% of the
haplotype diversity within the CRHR1-MAPT region
(Ke and Cardon 2003). For these “haplotype-tagging”
H1-SNPs, multilocus-haplotype frequencies were com-
pared between PD cases and controls (Johnson et al.
2001). A total of 17 different multilocus haplotypes
have frequencies of �2% and account for 174% of the
haplotypes estimated in the case and control groups
combined (table 4). Of note, there are six H1 subhap-
lotypes in the PD case group that are not represented
in the control group (XII–XVII), and seven haplotypes
in the control group are not present in PD cases (V–
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Figure 3 LD units are shown with respect to the physical position of H1-SNPs across the CRHR1-MAPT loci (Maniatis et al. 2002).
H1-SNPs 1–14 are indicated on each curve. Probable PD cases (red dashed line) and controls (black solid line) each consist of matched groups
of 81 individuals homozygous for H1/H1 (as defined by the intron 9 in/del [Baker et al. 1999]). The H1 subhaplotype overrepresented in
patients with PD, as defined by H1-SNPs 1 and 2, is indicated (bar with arrows).

XI). The comparison of multilocus haplotype counts
between patients with PD and controls was highly sig-
nificant: ; (16 df). Thus, the MAPT2 �6x p 78.8 P ! 1.0e
H1 haplotype term is a misnomer; H1 actually repre-
sents a clade of haplotypes on the same H1 backbone
(e.g., H1I, H1II, etc.) that are not H2. We postulated
that one or more H1 subhaplotypes harbor sequence
variability associated with disease. We attempted to use
PHYLIP to model the evolutionary history of H1 sub-
haplotypes; however, multiple solutions were possible
that fit the data equally well (data not shown). Nev-
ertheless, results are indicative of ancestral recombi-
nation between H1 subhaplotypes. This is more for-
mally demonstrated in terms of the LD map-unit pro-
file across MAPT H1. Regions of low LD (indicative of
recombination) appear as sloping “steps,” and regions
of high LD (limited haplotypic diversity) appear as hor-
izontal “plateaus” (Tapper et al. 2003) (fig. 3).

To refine the genomic region within CRHR1-MAPT
that contributes the most to disease association, we
compared haplotypes for smaller subsets of adjacent

markers, sliding across all 14 H1-SNPs. x2 analyses of
2-, 3-, and 4-marker haplotype counts in matched PD
cases and controls ( ) were performed usingn p 162
CLUMP (Sham and Curtis 1995). For illustration, the
�log10P values for haplotype trios are shown (fig. 4).

The number of H1 subhaplotypes containing markers
1, 13, and 2 is strikingly different between probable
PD cases and controls ( ; ). H1-� log P ! 3.22 P ! .0006
SNPs 1, 13, and 2 were relatively informative, with
minor allele frequencies of 0.40, 0.26, and 0.36 (within
H1/H1 controls), respectively. Inspection of all possible
pairwise combinations shows that the “A-A” haplotype,
denoted by H1-SNPs 1 and 2, is the most significantly
associated with disease ( ) (table 5). SignificantP ! .003
LD exists between these markers in cases (PD′ ! .00002)
compared with in controls (PD′ 1 .9). These findings
remain significant when other H1/H1 PD cases (possible
and probable PD, ; probable PD, ) andn p 201 n p 83
H1/H1 controls are considered ( ; ); then p 278 P ! .02
distribution of haplotypes (possible and probable PD
cases, probable PD cases, controls) is G-G (0.35, 0.38,
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Figure 4 �log10 simulated P values are shown for counts of each
haplotype trio compared between PD cases and controls. Empirical
and simulated (10,000 Monte Carlo–Markov Chain iterations) P val-
ues were equivalent.

Table 5

Assessment of Bilocus Haplotypes (H1-SNP 1–2)

SAMPLE

NO. WITH HAPLOTYPE (FREQUENCY)a

G-G A-G G-A A-A

PD cases 63 (.39) 22 (.13) 31 (.19) 46 (.29)
Controls 61 (.38) 42 (.26) 36 (.22) 23 (.14)

a Total number of PD cases and controls is 162.

0.44), A-G (0.17, 0.18, 0.14), G-A (0.17, 0.17, 0.23),
and A-A (0.31, 0.27, 0.19). Figure 4 highlights the po-
sition of H1-SNPs 1 and 2 within the MAPT gene.

Discussion

Our work has focused on the relatively homogeneous
population of Trondheim, Norway, since isolated pop-
ulations are generally more powerful for LD and disease-
association mapping. In conclusion, we replicated and
extended the association of MAPT H1 variability with
PD in Norway (Farrer et al. 2002). The H1 haplotype
extends 5′ of MAPT and includes the neighboring gene,
CRHR1, a region in which LD is considerable in patients
with PD. Given that PD typically affects individuals be-
yond their reproductive lifespan, this result was sur-
prising. It was intriguing that the oldest and most ex-
tensively studied patients with probable PD and controls
showed greatest evidence for MAPT H1 association,
suggesting that the role of tau in PD is influenced by
age. By genotyping H1-SNPs within the CRHR1-MAPT
interval, we explored the hypothesis that genetic vari-
ability in a neighboring gene may be responsible for
disease association (genetic “hitchhiking”); CRHR1 is a
good candidate, since it is important in both nervous
and immune systems (Webster et al. 1998). However,
the H1 subhaplotype associated with PD maps to a ge-
nomic interval of ∼90 kb that contains MAPT exons 1–
4.

Given the past literature on extended “nonrecombin-
ing” MAPT haplotypes, it is ironic that this assignment
was facilitated by the genetic architecture of H1 sub-
haplotypes and the recombination between them. We
focused on high-resolution analysis of H1 alleles, since
they are associated with disease. One explanation for
the lack of H1 and H2 recombination and for incon-

sistencies and/or marker duplication in the 17q21 phys-
ical map is that H2 represents a paracentric inversion.
This hypothesis is not inconsistent with the evolution
of syntenic primate chromosomes (Kehrer-Sawatzki et
al. 2002) and requires that the ends of the nonrecom-
bining H2 haplotype be defined.

Unifying hypotheses have been constructed to explain
how genetic variability in MAPT H1 may be associated
with PD, an a-synucleinopathy, and with 4R tauopa-
thies (de Silva and Farrer 2002). Of note, aberrant splic-
ing of MAPT exon 10 and its subsequent inclusion/
translation are responsible for the overproduction of 4R
tau in many familial cases of FTDP-17 (Hutton 2001).
In contrast, isoforms of tau without exons 2–3 have less
propensity to polymerize in vitro (King et al. 2000).
Given our discovery that the MAPT association in PD
includes exons 1–4, we propose that the PD-associated
haplotype harbors genetic variability that influences
splicing of exons 2–3. Of note, population genetics ex-
ploits ancestral recombination events and may facili-
tate high-resolution mapping of genes and sequence var-
iability, but LD cannot be used to bound an interval
associated with disease (this is in contrast to lower-
resolution linkage mapping within families, in which
obligate recombinants are used to define a candidate
region). Hence, variability 5′ of exon 1, within the pro-
moter, or 3′ of exon 4 should not be ruled out. In PSP,
a similar mechanism may be conceived, albeit one owing
to different H1-sequence variability. Both MAPT gene
splicing and expression may be important.

A useful analogy is the genetics of amyloid precursor
protein—mutations in the gene may lead to simple ov-
erexpression (Prasher et al. 1998) or may directly affect
protease cleavage and the production of amyloidogenic
Ab40/42 peptides, and either mechanism may predispose
to Alzheimer disease (Sambamurti et al. 2002). Func-
tional studies of MAPT promoter function and splicing
of exons 2–3 are now needed.
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